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Abstract

Traditional benchmarking implicitly assumes that decision making units operate in
isolation from their peers. For arable production systems in particular, this
assumption is unlikely to hold in reality. This paper quantifies spatial spillovers on
input-specific inefficiency using data envelopment analysis and a second-stage boot-
strap truncated regression model. The bootstrap algorithm is extended to allow for
the estimation of the parameter of the spatial weight matrix, which captures the
proximity between producers. The empirical application concerns Dutch arable
farms for which latitudes and longitudes are available. The average inefficiency
across years was 3.87% for productive inputs and 2.98% for damage abatement
inputs under variable returns to scale. For productive inputs technical inefficiency,
statistically significant spillover effects from neighbours’ age and their degree of
specialisation depended on the type of the spatial weight matrix used (inverse dis-
tance or k-nearest neighbours). Statistically significant spillover effects of subsidy
payments were adverse while statistically significant spillover effects from insur-
ance payments were beneficial. For damage abatement inputs technical ineffi-
ciency, statistically significant adverse effects were found for neighbours’ age and
subsidy payments and beneficial effects from neighbours’ insurance payments and
their degree of specialisation.

Keywords: Bootstrap truncated regression; crop farms; data envelopment analysis;
input-output efficiency; Netherlands; spatial econometrics; spatial lag in X model.
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1. Introduction

As noted by Tobler (1970, p. 236), ‘Everything is related to everything else, but near
things are more related than distant things’. In general, due to the interaction with the
surrounding environment, analyses of the agricultural sector can be expected to bene-
fit from the inclusion of spatial effects (Weiss, 1996). Spatial effects comprise spatial
heterogeneity and spatial dependence (Anselin, 2010). While spatial heterogeneity
concerns differences in the operational environment which consequently lead to differ-
ent input requirement and output possibility sets, spatial dependence arises from
interdependencies of measurements in space.

The availability and price of a plot determines whether a farmer decides to purchase
or lease in a particular location. As a consequence, fields are usually scattered around
a farm and directly intertwined with plots of other farmers. Focusing on the case of
Dutch farming, around 90% of farmers purchase their land within a 6.7 km radius
(Cotteleer et al., 2008). In turn, fields are not only exposed to environmental condi-
tions (Chambers et al., 2011), but also to management practices on neighbouring
fields. For example, the control of pathogens on nearby fields can be expected to sup-
press the population’s ability to disperse into other territories. In turn, spillover effects
can be generated by neighbours’ management practices. In addition, spillover effects
might be generated through the social network via the transfer of knowledge among
farmers (Tveteras and Battese, 2006; Lapple and Kelley, 2015).

The environmental consequences of agricultural inputs such as fertiliser and plant
protection agents are of societal concern (Kohler and Triebskorn, 2013). In the agri-
cultural economics literature, pesticides are commonly referred to as damage abate-
ment inputs (Lichtenberg and Zilberman, 1986). Damage abatement inputs reduce
potential shortfall rather than further increase output (Oude Lansink and Carpentier,
2008). Parametric (Oude Lansink and Carpentier, 2008) as well as non-parametric
(Oude Lansink and Silva, 2004; T. Skevas et al., 2014) approaches have been used to
assess whether farmers utilise such inputs efficiently. The need to account for environ-
mental differences was acknowledged by Skevas et al. (2012) and Skevas and Serra
(2017) under the implicit assumption that farmers operate in isolation from their
peers. Pest populations are spatial phenomena by nature (Turchin, 2003). Knipling
(1980) introduced the idea of area-wide pest management via collective actions. Simi-
larly, we stress that nearby control of pest populations affects pest pressure in the
landscape, which in turn influences the efficiency of a farmer in employing damage
abatement inputs. Hence, different farm characteristics can be expected to generate
externalities for the surrounding farmers. Through social networks, knowledge and
experience might be transferred among farmers (Lapple and Kelley, 2015). This can
foster improvements in input or output efficiency through observation and conversa-
tions with peers (Tveteras and Battese, 2006).

The need to control for spatial heterogeneity has already been emphasised in the
seminal work of Farrell (1957). The rise in geo-reference data has greatly benefited sci-
entific efforts to improve the measurement of productivity and efficiency by account-
ing for unobserved spatial heterogeneity in recent years (Fusco and Vidoli, 2013;
Vidoli and Canello, 2016). The spatial econometric literature is rich in applications on
spatial interdependencies (Anselin, 2010) and has started to attract the attention of
research working on productivity and efficiency. The first contribution in this regard
was developed by Druska and Horrace (2004) by modelling spatially correlated error
terms within the stochastic frontier setting. Various studies measured spatial
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dependence in efficiency or productivity in non-agricultural applications (Glass et al.,
2016; Tsionas and Michaelides, 2016; Pede et al., 2018). For the agricultural sector,
Areal et al. (2012) identified spatial dependence in technical efficiency of dairy farms
in the UK, Martı́nez-Victoria et al. (2019) found spatial spillovers in productivity
growth for Spanish agri-food companies and Skevas and Grashuis (2019) identified
spatial spillover effects on efficiency scores among farm cooperatives in the USA. I.
Skevas and Oude Lansink (2020) and I. Skevas (2020) found spatial spillover effects
on dynamic inefficiency of Dutch dairy farms.

Our study makes three distinct contributions beyond I. Skevas and Oude Lansink
(2020). First, and most importantly, it argues for the measurement of spatial spillovers
on output and input-specific scores rather than one composite measure of farm per-
formance. While this has clear benefits for policy design and farm management, previ-
ous studies on both nonparametric and parametric approaches have solely relied on
measuring spillovers on one composite farm-level efficiency score. Thereby, possibly
diverse spatial influences have been compressed into one composite effect that might
well provide erroneous insights. Second, we contribute by exploiting the advantages
of the spatial lag of X (SLX) model by estimating the spatial weight matrix as
opposed to the rule of thumb approach employed in I. Skevas and Oude Lansink
(2020). Thirdly, in contrast to I. Skevas and Oude Lansink (2020) we employ both a
k-nearest neighbour and an inverse distance approach. Subsequently, we communi-
cate and discuss the different results for the two approaches and stress the need for
practitioners to make use of different spatial weight matrices or more clearly motivate
their choice for either one. While the importance of accounting for spatial spillovers is
stressed in all the aforementioned studies, none of the studies simultaneously mea-
sured spillovers on input and output specific inefficiency. Furthermore, the above
studies used an arbitrary rule of thumb to define neighbouring farmers and construct
the spatial weights matrix.

The objective of this study is to quantify the effects of spatial spillovers on input
and output specific technical inefficiency in Dutch arable crop farms. We address two
gaps in the literature. First, we measure spatial spillovers on input and output-specific
inefficiency. This allows for more refined insights regarding which outputs or inputs
are influenced by neighbours’ characteristics in contrast to the previous studies which
did not include input and output-specific inefficiency scores. Second, rather than mak-
ing an ad hoc selection of the spatial weight matrix, we estimate the parameter of the
spatial weight matrix empirically, using farm-level information on coordinates, and
report the results for the two most commonly used types (i.e. inverse distance and k-
nearest neighbours). Previous studies have found results to be sensitive to the chosen
spatial weight matrix, which defines the structure of the spatial relationship between
decision-making units (DMUs) (Areal et al., 2012; Pede et al., 2018). The ad-hoc
selection of the spatial weight matrix is frequently criticised in the econometric litera-
ture (Gibbons and Overman, 2012; McMillen, 2012; Halleck Vega and Elhorst, 2015).
For this purpose, a two-stage data envelopment analysis (DEA) approach is used.
First, a non-parametric directional distance function is computed to estimate ineffi-
ciency scores for output, productive inputs and damage abatement inputs. Second, a
spatial econometric model is defined, which incorporates regressors for spatial lags of
farm characteristics alongside other non-lagged explanatory variables and time-period
fixed effects. In contrast to non-spatial efficiency analyses, this framework extends the
farm-level assessment by relaxing the assumption that DMUs operate in isolation
from their peers.
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Section 2 outlines our methodology, estimation strategy and our data. Section 3
reports our results. Section 4 discusses the implications and section 5 concludes.

2. Methodology

2.1. Directional distance function

Suppose N farmers produce Q outputs from I productive inputs, B damage abatement
inputs and F quasi-fixed factors. The damage abatement inputs are exclusively related
to plant health here. Non-negative vectors of outputs, productive inputs, damage
abatement inputs and quasi-fixed factors are denoted by y∈Q

þ, x∈I
þ, a∈B

þ and
k∈F

þ, respectively. The production technology for a DMU is fully represented by
the input requirement set as T y : kð Þ¼ f x,að Þ∈I

þ�B
þj x,að Þcan producey,givenkg:

A non-parametric representation of the technology can be depicted as
T y : kð Þ¼ x,að Þ :Y0λ≥yi,X

0λ≤xi,A
0λ≤ai,K

0λ≤ki,L
0λ¼ 1,λ≥0f g.

Where Y denotes a N × Q matrix of observed outputs and yi is a vector of observed
outputs for farm i. X is the N × I matrix of observed productive inputs and xi is the
vector of productive inputs used by farm i. A is the N × B matrix of observed damage
abatement inputs and ai is the vector of damage abatement inputs used by farm i. K is
the N × F matrix of observed quasi-fixed factors and ki is the vector of quasi-fixed
factors used by farm i. λ denotes a N × 1 vector of intensity variables (farm weights)
and L denotes the N × 1 unity vector. Constraining the sum of λ to unity enforces
variable returns to scale (Banker et al., 1984).

To estimate the input and output specific inefficiency scores, a directional distance
function is computed. Following Chambers et al. (1998), g¼�gx,�ga,gy

� �
denotes

the directional vector. The distance function aims to expand output and contract pro-
ductive as well as damage abatement inputs, simultaneously. The distance of DMUs
to the frontier (i.e. the inefficiency score) will generally depend on the chosen direc-
tional vector. Choosing the observed quantities g¼ gx ¼ x,ga ¼ a,gy ¼ y

� �
allows for a

direct interpretation in percentages. Furthermore, the measure is more in line with the
Farrell (1957) measure of efficiency as noted in Färe and Grosskopf (2000). The dis-
tance function can formally be depicted as follows:

D
!

x,a,y;gð Þ¼ sup βx,βa,βy : x�βxgx,a�βaga,yþβygy
� �

∈T y : kð Þ� �� �
(1)

Within all years T, the mathematical programme aims to identify the maximum attain-
able expansion of outputs in direction gy as well as the maximum feasible contraction
of productive inputs and damage abatement inputs in direction gx and ga, respectively.
To achieve this, the following linear programming problem is solved for all N observa-
tions separately for all years. By solving model 2 separately for every year, the reference
technology is allowed to vary from year to year. This is necessary to account for year-
specific weather conditions and changes in the technology over time.

D
!

x,a,y,k;gð Þ¼ max
βx,βa,βy,λ

i
βxþβaþβy
� �� �

(2a)

s.t.

∑
N

i¼1

λiyi≥yþβygy (2b)
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∑
N

i¼1

λixip≤xp�βxgx (2c)

∑
N

i¼1

λiaib≤ab�βaga (2d)

∑
N

i¼1

λikif≤kf (2e)

∑
N

i¼1

λi ¼ 1 (2f)

λi≥0 (2g)

where β is the percentage value of the expansion (contraction) of outputs (inputs).
Constraints (2b), (2c), (2d) and (2e) impose free disposability of outputs, productive
inputs, damage abatement inputs and quasi-fixed factors, respectively. Constraint (2f)
imposes variable returns to scale. Model 2 uses three reference bundles to compute
output and input specific inefficiencies. Following the seminal work of Chambers
et al. (1998), various studies used multiple reference bundles in their model specifica-
tion (e.g. T. Skevas et al., 2012, 2014; Kapelko et al., 2017; Dakpo and Lansink,
2019).

2.2. Determinants of inefficiency

The association of farm characteristics with the computed inefficiency scores is mea-
sured with the widely used bootstrap truncated regression model (Simar and Wilson,
2007). As is customary, farm characteristics are included in the second-stage regres-
sion to test for their associations with inefficiency scores. This has been done in the
context of both radial distance functions (Kapelko and Oude Lansink, 2015; Rezitis
and Kalantzi, 2016), and directional distance functions (Singbo and Lansink, 2010; T.
Skevas et al., 2012; Singbo et al., 2014). However, this study also tests for spatial spil-
lovers by also including spatially weighted regressors of the farm characteristics. This
specification is commonly referred to as the spatial lag of X (SLX) model (Halleck
Vega and Elhorst, 2015). The specification is a reduced form approach for measuring
spatial interdependency. In contrast to the spatial lag and the spatial error model, the
SLX model allows for the estimation of the parameter of the spatial weight matrix
which enables practitioners to circumvent rule of thumb approaches. In addition, in
contrast to the spatial lag model, the signs of direct and indirect effects are not
restricted to be similar when employing the SLX model (Halleck Vega and Elhorst,
2015). Lastly, if error terms are spatially structured yet this structure is not accounted
for, the estimates remain unbiased (Strohm et al., 2014). To avoid overestimation of
the spatial spillovers and to account for the fact that the reference technology is differ-
ent across years, temporal fixed effects are included as dummy variables. The trun-
cated regression model can formally be specified as follows:

β¼ αIþηTþδZþθWZþ ∈ (3)
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where β is a vector of the dependent variable (i.e. pooled inefficiency scores for N
farmers). Following T. Skevas et al.’s (2012) study on Dutch arable crop farms, we
use the inefficiency scores under variable returns to scale for the second stage moti-
vated by the fact that the variable returns to scale technology represents a less restric-
tive formulation of the technology. While the observed distribution of β is censored at
zero, true inefficiency remains unobserved. Therefore, the dependent variable in equa-
tion (3) must be treated as having a truncated distribution with a point of truncation
at zero. I is the vector of ones associated with the constant term parameter α. T
depicts the temporal fixed effects with the vector of response parameters η. Z denotes
the matrix of J explanatory variables and δ denotes the vector of unknown parameters
to be estimated. W is the spatial weight matrix which captures the spatial proximity
between farmers. WZ depicts the linear combinations of neighbours’ characteristics
obtained by inner products of the spatial weight matrix with a variable of interest. θ
denotes the vector of parameters of the spatially lagged farm characteristics and ∈
denotes a vector of independent and identically distributed error terms with zero
mean and variance σ2. Despite panel data at hand, fixed or random effects could not
be included in equation 3 due to the use of the Simar and Wilson (2007) bootstrapping
algorithm (T. Skevas et al., 2012, 2014; Kapelko and Oude Lansink, 2015; Rezitis and
Kalantzi, 2016; I. Skevas and Oude Lansink, 2020).

The spatial weight matrix (W) is constructed based on geographic proximity. W is
always symmetric. wij denotes the elements of W. We employ two common types of
spatial weight matrices. In the inverse distance spatial weight matrix (IVD), the value
of wij is the inverse distance between farmers i and j. In the k-nearest neighbour spatial
weight matrix (KNN), distances between farmers i and j are computed. Subsequently,
a binary matrix is constructed in which, for every farm, the k smallest distances
receive a value of 1 while all others a value of 0 (see e.g. Martı́nez-Victoria et al.,
2019). While IVD results in larger weights on characteristics of DMUs in closer prox-
imity, this weight matrix implicitly assumes that spatial influences extend far beyond
the nearby vicinity. In contrast, KNN restricts the spillovers to k neighbours, but the
spatial influences from these k neighbours are assumed to be of equal importance.
Diagonal elements (wij where i = j) are always set to zero. IVD is standardised by
dividing every element by the maximum eigenvalue of W, whereas KNN is standard-
ised by dividing W by its row-sums (LeSage and Pace, 2009; Elhorst, 2014b; Halleck
Vega and Elhorst, 2015). As mentioned above, using IVD ensures that nearby DMUs
exert larger influence compared to distant DMUs. Nonetheless, a distance cut-off (γ)
from which onward no spatial influence is assumed to exist is usually arbitrarily deter-
mined by the scholar (e.g. T. Skevas and Grashuis, 2019). In contrast to previous
work, we estimate the optimal distance cut-off empirically instead of choosing an arbi-
trary value. For KNN, we estimate the optimal number of neighbours which we also
denote with γ for simplicity. The absence of information on the true spatial weight
matrix is one of the major hurdles of applied spatial econometrics (Gibbons and Over-
man, 2012; McMillen, 2012). A data-driven approach for the selection of W is there-
fore one of the major advantages of the SLX model (Halleck Vega and Elhorst, 2015).
The ad-hoc selection of either IVD or KNN is analysed by estimating both to assess
the robustness of our results. In traditional spatial econometric applications, ordinary
least squares residuals are minimised to estimate the optimal spatial structure for the
SLX model (Elhorst, 2014a). In line with this, we maximise the log-likelihood of
observing the data within the maximum likelihood estimation of the Simar and Wil-
son (2007, pp. 41-42) bootstrap algorithm to search for the optimal distance cut-off or
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the optimal number of neighbours. This selection goes beyond testing a number of
predefined spatial structures, as it allows practitioners to optimise the parameter of
the spatial weight matrix empirically.

2.3. Estimation

To estimate the parameter of the spatial weight matrix, a non-standardised (inverse)
distance weight matrix is generated first. The optimisation algorithm either searches
for the optimum distance cut-off between 2.5 and 100 km or for the optimum number
of neighbours between 2 and 70. Setting lower and upper bounds ensures feasible val-
ues (e.g. γ> 0 for IVD; γ < N for KNN). If the lower or upper limit is found to be
binding (i.e. the evaluated quantiles for the bootstrapped distribution of γ fall on one
of the limits), the search-range for γ should be widened. The following steps are taken
within the optimisation of the spatial weight matrix.

1 For IVD, wij smaller than 1/γ are set to zero. In other words, spatial influences from
neighbours which are further away than the drawn cut-off value are removed. For
KNN, for every farm the γ smallest distances are set to 1 and others to 0. In other
words, only the spatial influences from the γ neighbours are retained.

2 The spatial weight matrix is standardised by the maximum eigenvalue for IVD and
row-sums for KNN.

3 Spatially lagged variables are generated by computing inner products of the rows
of the particular spatial weight matrix and the farm characteristics at hand.

4 Equation (3) is computed and the AIC returned.

As true inefficiency scores are unobserved and the estimates serially correlated, we
implement the second stage using Algorithm 1 developed by Simar and Wilson (2007,
pp. 41–42). First, inefficiency estimates are computed using model (2). Second, maxi-
mum likelihood in a truncated regression setting is used to obtain estimates of the
environmental response parameters as well as the variance of the error term for the
inefficient DMUs. At this stage, the aforementioned optimisation routine is performed
once. Succeeding, the inefficiency scores are replaced by linear predictions using the
environmental response parameters for the optimal value of γ Third, for 2,000 itera-
tions errors are sampled out of a truncated normal distribution, the optimisation of γ
performed and the environmental variables regressed onto the predicted inefficiencies.
Lastly, confidence intervals are constructed for the empirical distributions of the coef-
ficients as well as γ. obtained from the bootstrap.

Following Singbo et al. (2014), the bootstrapped coefficients are used to compute
marginal effects at the mean of the variables in Z as follows:

∂E βjZ,β>0ð Þ
∂Z

¼ 1�Z0 δ∗

σ∗
�
ϕ Z0 δ∗ = σ∗
� �

Φ Z0 δ∗ = σ∗
� ��

ϕ Z0 δ∗ = σ∗
� �

Φ Z0 δ∗ = σ∗
� �

2
4

3
5
2

0
B@

1
CA

0
B@

1
CA δ∗ (4)

where β is the estimated inefficiency score, Z is the mean of a particular environmental
variable, δ∗ is the bootstrapped coefficient for the environmental variable, σ∗ is the
estimated variance of the error term, ϕ �ð Þ is the standard normal distribution and Φ �ð Þ
is the standard normal cumulative distribution function.
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2.4. Data

The balanced panel data1 on Dutch arable farms are provided by Wageningen Eco-
nomic Research and cover the period from 2011 to 2016. The data set comprises
farm-level information on revenues, expenses and balance sheet items as well as geo-
graphical information in the form of longitude and latitude coordinates. Furthermore,
characteristics of the primary operator are also available. As coordinates were
rounded at one minute by the data provider, we added random noise by sampling out
of a uniform distribution of minus one minute to plus one minute to prevent DMUs
with the exact same coordinate.2 Since this study focuses on farms engaged primarily
in the arable crop production, we have selected farms whose revenue from sales of
arable crops comprises at least 66% of their total revenues within every year the farm
is observed. The final data set constitutes a balanced panel of 75 farms with 450 obser-
vations. Table 1 presents the descriptive statistics. While a larger number of DMUs
would have been desirable, the parsimony of model 2 justifies the use of annual refer-
ence technologies. DEA is frequently used in the context of a small number of DMUs
(Dimara et al., 2005). However, the resulting spatial coverage requires care when
extrapolating the results.

Table 1
Descriptive statistics

Variable Dimension Mean S.D.

Output 1000 Euro 672.07 608.21
Productive inputs 1000 Euro 110.99 81.37
Damage abatement inputs 1000 Euro 64.01 51.02

Buildings and machinery 1000 Euro 776.78 817.39
Labour 100 hours 48.53 30.01
Area 100 hectare 1.27 0.92

Age of farmer 10 years 5.23 1.00
Subsidies per ha 100 Euro 3.80 1.73
Insurance per ha 100 Euro 1.14 0.54
HHI [0,1] 0.34 0.13

1The data was balanced to ensure that the spatial weight matrix does not change over time.

Using unbalanced data would allow for the estimation of the spatial weight matrix as described
above if only one overall γ for all year-specific weight matrices is used. Alternatively, one could
estimate year-specific γt. However, this would significantly increase the complexity of the opti-

misation problem and might result in numerical instability.
2The storing of location information in the rounded format resulted in DMUs with the same
location. This would have resulted in (infeasible) implausible values when computing the (in-

verse) distances. Omitting duplicate coordinates is highly undesirable as this would remove
DMUs within close proximity which are expected to be critical in generating spillovers. While
adding random noise between minus and plus one-degree minute means that the spatial weight

matrix inherited a random aspect, in practice the consequences were found to be minimal. We
computed 10,000 draws and constructed distance matrices to test the Spearman correlation of
DMU distances between them. We found a correlation of 99.96%, suggesting that the ordering

of importance among DMUs is virtually unaffected by the random noise.
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In our data on Dutch arable crop farms, the vast majority of total revenue is gener-
ated by potatoes, barley, sugar-beet, wheat, onions and vegetables.3 Using 2010 as the
base year, a Törnqvist index is constructed.4 The deflated total revenue, excluding
subsidies, is used as output (Y). Five categories of inputs are used. First, productive
inputs (X) comprise expenses of seeds and plants, fertilisers, energy, other crop-speci-
fic costs and contract work, which were deflated with a Törnqvist index of the input
prices. Second, chemical and biological crop protection agents (A) are measured by
deflating the aggregated expenditures for both using the price index for crop protection
agents. Third, buildings and machinery are measured in deflated book values using a
Törnqvist index. Fourth, total labour is measured in man-hours and consists of family
and hired labour. Fifth, total utilised agricultural area is measured in hectares and
includes owned, as well as rented land. Capital, labour and area are included in the
matrix of quasi-fixed factors (K).

For the second stage, information on the farmer’s age, the received subsidies and
insurance payments are obtained from the data set. Subsidies and insurance payments
are included as payments per hectare to avoid measuring farm-size effects (Minviel
and Latruffe, 2017). The Herfindahl-Hirschman Index (HHI) is computed as proxy
for the farm specialisation (see e.g. Pope and Prescott, 1980; Dimara et al., 2005; Kim
et al., 2012). The HHI is computed by summing the squared revenue shares of ware
potatoes, energy crops, barley, grass-seed, oats, other arable crops, other cereals,
pulse, seed potatoes, rye, sugar-beet, wheat, fodder crops, onions, starch potatoes,
flower bulbs, turnips, vegetables, other horticulture, cattle, cut flowers, pigs, poultry
and other sources of revenue. Our one-output approach is motivated by the curse of
dimensionality and the limited number of DMUs per year at hand. The effects of farm
specialisation, or diversification, have previously been analysed not only in single-out-
put models (Dimara et al., 2005; Baležentis and De Witte, 2015), but also in the con-
text of one overall farm-level score (Zhu and Oude Lansink, 2010; Zhu et al., 2012;
Singbo et al., 2014; I. Skevas et al., 2018). Despite our one-output approach, econo-
mies of scope would become apparent through positive estimates for the coefficient
with respect to HHI. This would reflect that lower input-specific technical inefficien-
cies are associated with lower scores for the HHI (i.e. more diversified farms). Finally,
the available latitude and longitude coordinates are used to calculate the distance
between farmers. Within the previously described algorithm, the spatially lagged vari-
ables for age, subsidies per hectare, insurance payments per hectare and the HHI are
computed as inner products of the spatial weights matrix with the farms’
characteristics.5

Age can be associated with lower inefficiency through the accumulated knowledge
from learning-by-doing. On the other hand, it can be associated with higher ineffi-
ciency due to decreased motivation or health (Tauer, 1995). The literature is split

3Differences in the revenue shares from these crops were found not to be associated with differ-
ences in technical inefficiency.
4The Törnqvist index was constructed as ln Pt

Pt�1
¼ 1

2∑
n

i¼1

pi,t�1qi,t�1

pt�1qt�1
þ pi,tqi,t

ptqt

� �
ln

pi,t
pi,t�1

� �
, where time is

indexed with t, the inputs or quasi-fixed factors are indexed with i, prices are denoted with p,
and quantities with q. Total expenses were divided by the Törnqvist price indices to obtain
implicit quantities.
5Ideally, additional farm characteristics such as education and agricultural training would be
included in the second-stage regression. However, such information is not available in our data

set.
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regarding the potential effects of subsidies on farm-level efficiency (Minviel and
Latruffe, 2017). Subsidies may improve the ability to invest in new technology which
would have beneficial effects on efficiency. Alternatively, subsidies can reduce the
incentives to make economically rational decisions and thereby decrease efficiency
(Zhu et al., 2012). A higher degree of insurance coverage might result in farmers
undertaking more risky investments in new technology (Dercon and Christiaensen,
2011; Farrin and Miranda, 2015), which could reduce inefficiency. However, larger
payments might be associated with higher inefficiency of pesticides as farmers’ percep-
tion of yield risk might influence their degree of insurance coverage (Sherrick et al.,
2004), as well as their tendency to overuse damage abatement inputs. The degree of
specialisation is expected to be associated with lower inefficiency due to more experi-
ence in producing the particular product as well as the ability to better optimise pro-
duction processes (Sauer and Latacz-Lohmann, 2015). In terms of neighbours’
characteristics, the neighbours’ age could be associated with lower inefficiency due to
knowledge spillovers (Porter, 2003; Tveteras and Battese, 2006). Theory regarding the
expected effect of the neighbours’ subsidies per hectare are absent from the literature.
One exception is Strohm et al. (2014), who found adverse effects on farm survival
from increased subsidy payments to neighbouring farms. Strohm et al. (2014) hypoth-
esised that neighbours’ subsidy payments increase land prices in the vicinity, which
negatively affects the ability to optimise the scale of production. Risk averse farmers
are more likely to have higher insurance coverage (Sulewski and Køoczko-Gajewska,
2014). Spatial effects from higher insurance payments of neighbouring farms might
measure spillovers of risk attitudes. On the one hand, this could result in adverse
effects on pesticide inefficiency through social pressure to safeguard against pathogen
multiplication. On the other hand, risk averse neighbours might increase vigilance
toward pests and thereby improve technical inefficiency of damage abatement inputs
through collective efforts as well as through a reduced pest pressure in the landscape
as a result of improved phytosanitary conditions on their own fields. Finally, the
neighbours’ degree of specialisation is expected to be associated with reduced ineffi-
ciency due to experience spillovers (Tveteras and Battese, 2006).

Table 2
Average annual inefficiency scores in percent for the output (βy), productive inputs (βx), and

damage abatement inputs (βa)

2011 2012 2013 2014 2015 2016 Mean

Variable returns to scale
βy 0.00 0.00 0.00 0.00 0.00 0.00 0.00

βx 5.91 3.60 3.06 5.47 2.55 2.61 3.87
βa 2.51 2.35 2.98 4.00 3.73 2.34 2.98

Scale inefficiency

βy 0.00 0.00 0.00 0.00 0.00 0.00 0.00
βx −0.06 0.13 −0.51 0.78 1.05 2.53 0.65
βa 1.66 1.19 1.46 0.40 1.37 3.27 1.56
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3. Results

3.1. Directional distance function

Table 2 presents the annual average inefficiency for output, productive inputs and
damage abatement inputs under Variable Returns to Scale (VRS). The mean ineffi-
ciency scores under VRS of 0, 3.9 and 3.0 suggest that the potential for producing out-
put is fully exploited whereas farmers can decrease the use of productive inputs and
damage abatement inputs by 3.9% and 3.0%, respectively. Farmers operate at an
almost optimal size with average scale inefficiencies of 0% for output, 0.6% for pro-
ductive inputs and 1.5% for damage abatement inputs.

The technical and scale inefficiency scores are not comparable between years,
because within-year computations relate to a different reference technology. This is
accounted for in the second stage bootstrap truncated regression by including tempo-
ral fixed effects. There is some variation in the inefficiencies over the years, which are
likely to reflect differences in weather, rather than underlying changes in technologies
for these crop farms.

3.2. Determinants of inefficiency

Tables 3 and 4 present the results of the bootstrap truncated regression of productive
inputs and damage abatement inputs, respectively. Given the sensitivity of some
results to the type of spatial weight matrix used, the tables also provide the AIC for

Table 3
Bootstrapped regression results for productive inputs (βx)

Technical Scale

IVD KNN IVD KNN

Intercept 0.203*** 0.910*** −0.052 0.423
2012 −0.050*** −0.031*** −0.032 −0.014
2013 −0.055*** −0.035** 014 0.046
2014 −0.004 0.009 −0.027 0.000

2015 −0.065*** −0.035** 0.003 0.048
2016 −0.061*** −0.019 0.054*** 0.119*
age −0.010*** −0.017*** 0.008* 0.008

subsidies −0.156*** −0.129*** 0.045 0.054
insurance −0.088 −0.035 0.155* 0.094
HHI −0.089*** 0.002 −0.117*** −0.092**
W_age 0.025** −0.129*** −0.007 −0.018
W_subsidies −0.127 0.177** 0.038 −0.321
W_insurance −1.066*** −0.487 0.288 −1.891
W_HHI 0.138* −0.219*** −0.086 −0.239
sigma 0.038*** 0.039*** 0.037*** 0.037***
AIC −1397 −1382 −1411 −1384
γ 42.3 16 54.3 38

γ90%CI [15.4, 87.1] [11, 19] [14.7, 91.2] [17, 56]

Note: ***P < 0.01; **P < 0.05; *P < 0.10
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comparison. The bootstrap truncated regression was not feasible for outputs due to
lack of variation in output specific inefficiency.

For the regression of VRS technical inefficiency of productive inputs, 80% and
66% of the parameters are significant (at the 10% level or lower) for the IVD and
KNN model, respectively. For the scale inefficiency on the other hand, only 33% and
20% of the parameters are significant for the IVD and KNN models. Table 3 also
shows that the results of the productive input-specific technical and scale inefficiency
are sensitive to whether an IVD or a KNN spatial weight matrix was used. The results
in Table 3 show that the signs of the statistically significant parameters generally (with
the exception of W_age and W_HHI) do not change when using either IVD or KNN.
However, some variables are only significant in one of the models (e.g. HHI, W_subsi-
dies and W_insurance for the VRS inefficiency and age and insurance in the scale
inefficiency).

For damage abatement inputs inefficiency, a similar pattern arises with 60% and
66% of the parameters being significant (at the 10% level or lower) for the VRS tech-
nical inefficiency regression of the IVD and KNN models, respectively. For scale inef-
ficiency, only 33% and 13% of the parameter were significant for the IVD and KNN
models, respectively. The signs of the statistically significant parameters generally do
not change when using the IVD or KNN model, but the statistical significance of
some variables does depend on choosing IVD or KNN (e.g. W_age, W_subsidies and
W_HHI for the VRS inefficiency, and farmers’ age for scale inefficiency).

For productive inputs, the optimal distance cut-off was estimated to be 42.3 km for
technical inefficiency and 54.3 km for scale inefficiency. However, the 90% confidence

Table 4
Bootstrapped regression results for damage abatement inputs (βa)

Technical Scale

IVD KNN IVD KNN

Intercept 0.089** 0.534 −0.041 0.339
2012 −0.009 0.002 −0.016 −0.007
2013 0.027* 0.043* −0.007 0.011
2014 0.052*** 0.066*** −0.103*** −0.078**
2015 0.047*** 0.097*** −0.014 0.006
2016 0.022 0.118*** 0.023** 0.043
age −0.016*** −0.014** 0.009** 0.005

subsidies −0.232*** −0.218*** 0.029 0.028
insurance 0.121 −0.035 0.111* 0.112*
HHI 0.014 −0.007 −0.036 −0.024
W_age 0.028** 0.027 −0.001 −0.068
W_subsidies 0.169 0.255** −0.082 −0.174
W_insurance −1.019*** −3.541*** 0.150 −0.173
W_HHI −0.140 −0.817*** 0.008 0.148

sigma 0.039*** 0.047*** 0.038*** 0.037
AIC −1530 −1437 −1786 −1798
γ 57.5 29 54.8 30

γ90%CI [25.3, 86.7] [27, 31] [15.2, 94.2] [17, 49]

Note: ***P < 0.01; **P < 0.05; *P < 0.10
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interval obtained from the bootstrap suggests rather large intervals ranging from 15.4
to 87.1 km and 14.7 to 91.2 km for technical and scale inefficiency, respectively. This
could be caused by the sizeable error terms sampled within the bootstrap. In addition,
it is important to note that only a subsample of the population is included in the data.
Consequently, the estimation of distance decay effects is certainly aggravated. Argu-
ably, the large confidence intervals suggest a minor influence of the distance cut-off on
model performance. This seems plausible given the strong weight of close-by DMUs
when constructing spatially lagged regressors using the IVD weight matrix. The opti-
mal number of neighbours was estimated to be 16 for technical inefficiency and 38 for
scale inefficiency. The 90% confidence interval ranged 11 to 19 for technical ineffi-
ciency and 17 to 56 for scale inefficiency. For damage abatement inputs, the optimal
distance cut-off was estimated to be 57.5 km for technical inefficiency and 54.8 km for
scale inefficiency. The 90% confidence interval ranged from 25.3 to 86.7 km and 15.2
to 94.2 km for technical and scale inefficiency, respectively. The optimal number of
neighbours was estimated to be 29 for technical inefficiency and 30 for scale ineffi-
ciency. The confidence interval ranged from 27 to 31 neighbours for technical ineffi-
ciency and 17 to 49 neighbours for scale inefficiency.

In terms of model performance, the IVD based regressions obtained a lower AIC
score compared to the KNN equivalents for all inefficiencies except the scale ineffi-
ciency of damage abatement inputs. This suggests that including influences from
nearby DMUs, and weighting them more, was able to explain the inefficiency scores
better than including influences of the nearby community of k farmers. However, we
should be careful about extrapolating this result to other data. The IVD and KNN
approach could very well perform differently if a more complete spatial coverage was
available. The balanced panel data used for this analysis comprises only 75 DMUs
which are distributed across the Netherlands. Consequently, measuring influences
from k nearest neighbours does not necessarily reflect k tightly connected farms in
space. The IVD matrix takes distance into account more directly and places th major-
ity of the weight on the farmer(s) in close proximity. As near things tend to be more
related than distant things (Tobler, 1970), it might well be that IVD was able to
explain the data better than KNN given the spatial coverage at hand.

To allow for interpretation of the association, marginal effects are calculated at the
mean of the data after equation (4). The marginal effects are depicted in Table 5.
While statistically significant, some marginal effects are not economically significant.
In particular, the marginal effects from a 10-year increase in age, but also from a rise
in subsidy payments of €1,000 per hectare were small with a decrease in productive
inputs and damage abatement inputs inefficiency of around 0.2% and 2%,
respectively.

For damage abatement inputs inefficiency, insights on the direction of spillover
effects were more robust compared to productive inputs inefficiency. The spatial spil-
lover effects from the neighbours’ degree of specialisation (as measured with HHI) on
productive inputs inefficiency were particularly sensitive to the type of spatial weight
matrix used. Our results could suggest that farmers are influenced differently depend-
ing on whether one proximate peer is highly specialised or whether the neighbourhood
is characterised by a community of specialised peers. Areas with neighbourhoods of
highly specialised farmers might be characterised by operational conditions more tai-
lored to arable farming. These beneficial effects do not necessarily emerge when hav-
ing one specialised peer in proximity.
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The most sizeable spillover effects are for neighbours’ received subsidies, in the
form of direct payments, and their insurance payments. For KNN, a cumulative
increase of €1,000 in subsidy payments per hectare is associated with an increase in
productive inputs technical inefficiency by 14.6% and in damage abatement inputs
technical inefficiency by 23.1%. For IVD, a cumulative increase of €1,000 in insurance
payments per hectare is associated with a decrease in productive inputs inefficiency by
12.4% and in damage abatement inputs technical inefficiency by 12%.

4. Discussion

Our estimated technical inefficiency scores for productive inputs and damage abate-
ment inputs are in line with earlier findings by T. Skevas et al. (2012) and T. Skevas
et al. (2014) who identified technical inefficiency scores (0.03 to 0.10) for productive
inputs in the Netherlands during 2003 to 2007, including undesirable inputs and out-
puts. T. Skevas et al. (2014) estimated annual averages of output technical inefficiency
to range between 7% and 13% for Dutch arable farmers, compared with our 2011 to
2016 annual average inefficiency of 0% (cf. Dakpo and Lansink, 2019). Furthermore,
to ease the estimation of the spatial weight matrix we decided to focus on a balanced
panel. This could also explain why we find no inefficiency in output and very low inef-
ficiencies in inputs.

The results from the second stage regression (Table 5) suggest that older farmers
are associated with lower technical inefficiency of productive inputs and damage
abatement inputs. This could stem from their accumulated knowledge and past

Table 5
Marginal effects on productive inputs and damage abatement inputs inefficiency

Technical Scale

IVD KNN IVD KNN

Productive inputs
age −0.002*** −0.002*** 0.005* 0.005
subsidies −0.023*** −0.022*** 0.022 0.027
insurance −0.027 −0.012 0.075* 0.040

HHI −0.020*** 0.001 −0.022*** −0.020**
W_age 0.022** −0.001*** −0.002 −0.002
W_subsidies −0.029 0.146** 0.016 −0.019
W_insurance −0.124*** −0.077 0.146 −0.047
W_HHI 0.078* −0.027*** −0.023 −0.024

Damage abatement inputs

age −0.002*** −0.002** 0.006** 0.003
subsidies −0.024*** −0.028*** 0.013 0.012
insurance 0.054 −0.012 0.049* 0.050*
HHI 0.005 −0.002 −0.011 −0.008
W_age 0.026** 0.027 −0.000 −0.001
W_subsidies 0.109 0.231** −0.022 −0.022
W_insurance −0.120*** −0.046*** 0.065 −0.046
W_HHI −0.031 −0.019*** 0.003 0.109

Note: ***P < 0.01; **P < 0.05; *P < 0.10
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experiences (Tauer, 1995). However, a cumulative increase in the neighbours’ age is
associated with higher input technical inefficiency scores. Tveteras and Battese (2006)
suggest that firms which operate next to knowledge-intensive producers are more
likely to be technically efficient. Younger farmers might be more up to date with
recent developments and in turn could provide signals to neighbouring peers that
improve their decision-making. Age is also associated with a higher scale inefficiency
suggesting that older farmers operate farms at a sub-optimal scale. This finding might
reflect the shorter time horizon for older farmers, resulting in a lower incentive to
invest in scale changes (Davis et al., 2013).

Our results suggest that higher subsidies, comprising only direct payments, are asso-
ciated with lower technical inefficiencies of productive and damage abatement inputs,
albeit not economically significant. The literature is divided regarding the effects of
subsidies on farm-level efficiency (Zhu and Oude Lansink, 2010; Minviel and Latruffe,
2017). For the Netherlands, previous studies have identified small impacts of subsidies
or a significant positive associations between subsidies and technical inefficiency (Rei-
dsma et al., 2009; T. Skevas and Serra, 2016). The conflicting results in our study
might be related to differences between our approach of measuring output and input-
specific inefficiency scores and the approach used in previous studies. Our findings
could suggest that subsidies allow for investments in improved technologies that
might operate more efficiently (Zhu and Oude Lansink, 2010). Similarly, Reidsma
et al. (2009) found direct effects of subsidies per hectare on input intensity per hectare
and further argue that increased intensity can lead to a more profitable use of the
area.

In terms of spatial spillovers, our results for subsidies were statistically insignificant
for IVD. However, for KNN the results suggest a statistically significant positive asso-
ciation with technical inefficiency of productive inputs and damage abatement inputs.
The sensitivity of results to the choice of the spatial weight matrix was also stressed in
previous studies (Areal et al., 2012; Pede et al., 2018). Our results highlight the impor-
tance of employing multiple approaches and to report on the robustness of results.
The spatial spillover effect of subsidies does not occur for scale inefficiency. Strohm
et al. (2014) found adverse effects of neighbours’ subsidy payments on farm survival.
Higher subsidy payments can improve farmers’ ability to purchase land and thereby
increase land prices in the vicinity (Strohm et al., 2014). Our results for scale ineffi-
ciency reject Strohm et al.’s (2014) hypothesis in this case.

Higher insurance payments per hectare are associated with larger scale inefficiency.
This might stem from the need of farmers with sub-optimal scales of production to
more rigorously safeguard their income. Alternatively, this could suggest that a base-
level of insurance is seen as essential by Dutch arable farmers. Our results on the spa-
tial spillover of neighbours’ insurance payments suggest statistically significant nega-
tive relations with the technical inefficiency of productive inputs and damage
abatement inputs. Farmers with a high perception of yield risk might opt for higher
insurance coverage (Sherrick et al., 2004). At the same time, these farmers might be
more likely to control diseases in their fields more rigorously to avoid a shortfall in
yield. This extra effort could improve the bio-security in the vicinity and could thereby
benefit their neighbours.

Consistent with the literature, the degree of specialisation (as measured by HHI) is
associated with lower technical inefficiency in productive inputs. Specialisation implies
expertise in producing the particular good (Zhu et al., 2012; I. Skevas et al., 2018).
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The mixed results for IVD and KNN are likely related to the different nature of the
spatial weight matrices. While IVD strongly emphasises the degree of proximity,
KNN treats the selected number of neighbours as equally important. In turn, our
results shed light on the different effects that could arise from an individual versus a
community of neighbours. The mixed results for the spatial spillovers could suggest
that distance itself is of greater importance when measuring effects of certain farm
characteristics. We argued that many of the spillover effects on damage abatement
inputs technical inefficiency from different farm characteristics are rooted in the inter-
dependence among fields which arises through pathogen multiplication and dispersal.
In contrast, spatial spillovers on technical inefficiency of productive inputs are
hypothesised to arise through the social network of farmers. Consequently, it might
well be that different effects arise depending on whether proximity is taken into
account directly, as in IVD, or whether a nearby community of k neighbours is inves-
tigated jointly. Certainly, in line with Areal et al. (2012) and Pede et al. (2018) our
analysis stresses the need to communicate the robustness of results in spatial econo-
metric applications depending on the different formulations of the spatial weight
matrix.

While some research has evaluated community effects on individuals’ behaviour
(Stephenson, 2009; Foster and Brooks-Gunn, 2013), more work is needed on such
effects within the context of production economics. Signals for improving operational
processes could very well differ depending on whether individual peers or the general
neighbourhood characteristics are referenced by the decision-making unit. Certainly,
a clearer distinction between individual-centric versus community-based spillovers is
necessary to improve the design of policy. As evident from our results on the spillover
effect from subsidies, adverse effects might go unnoticed if analyses do not aim at cap-
turing the different channels of influence.

5. Conclusions

Our objective was to empirically quantify the effects of spatial spillovers on output
and input-specific technical inefficiency in Dutch arable crop farms. First, a non-para-
metric directional distance function was computed using DEA to estimate technical
and scale inefficiency scores for output, productive inputs and damage abatement
inputs (pest control spending). Second, a spatial econometric model was estimated
which incorporates regressors for spatial lags of farm characteristics alongside other
non-lagged explanatory variables and time-period fixed effects. We use both the
inverse distance weight matrix and the binary k-nearest-neighbours weight matrix and
also estimate the distance cut-off and the optimal number of neighbours rather than
imposing rules of thumb.

The average technical inefficiency across years was found to be 0% for output,
3.9% for productive inputs and 3.0% for damage abatement inputs. Results of spatial
spillovers were sensitive to the choice of the spatial weight matrix which suggests a
need to apply multiple lenses when estimating the spatial spillovers in spatial econo-
metric applications. The differences in the results of the two approaches may well
reflect the different types of spillovers, where the inverse distance approach empha-
sises spatial proximity and the k-nearest neighbours assigns equal importance to every
farmer in the community of k neighbours. For productive inputs technical ineffi-
ciency, statistically significant spillover effects from neighbours’ age and their degree
of specialisation depended on the type of the spatial weight matrix used, statistically

� 2020 The Authors. Journal of Agricultural Economics published by John Wiley & Sons Ltd
on behalf of Agricultural Economics Society

Spillovers on Input-specific Inefficiency 239



significant spillover effects of subsidy payments were adverse and statistically signifi-
cant spillover effects from insurance payments were beneficial. For damage abatement
inputs technical inefficiency, statistically significant adverse effects were found for
neighbours’ age and subsidy payments and beneficial effects from neighbours’ insur-
ance payments and their degree of specialisation. For scale inefficiency, no spatial spil-
lover effects were found.

Accounting for spillover effects in estimating the determinants of technical and
scale inefficiency relaxes the assumption that farmers operate in isolation from their
peers. Fostering the influx of young farmers is often emphasised by EU policy-makers
(e.g. Rovný, 2016). Our results suggest that young farmers could not only lead to
more optimal scales of production but benefit the close-by network of peers. The need
for farm subsidy payments is often strongly debated in the literature (e.g. Minviel and
Latruffe, 2017). We found significant adverse spillover effects from subsidy payments
on the technical inefficiency of both productive inputs and damage abatement inputs.
Hence, the discussion on the need for subsidies might be broadened to also include
spillovers to the nearby community of peers. We found that insurance payments are
not statistically associated with the technical inefficiency of the insured. However,
sizeable beneficial spillover effects were found for both productive inputs inefficiency
and damage abatement inputs technical inefficiency. The spatial insurance coverage
could inform insurance design by signalling the risk awareness of a community of
farmers. The beneficial spillover effects might suggest that risk premia could be low-
ered if a community of farmers is insured. The spatial nature of pathogens certainly
results in a mutual dependence between farmers, which is best approached through
collective actions (Knipling, 1980). The optimal degree of specialisation is subject to
discussion in the agricultural economics literature (Kurosaki, 2003; Kim et al., 2012).
While results for productive inputs technical inefficiency differed for the two spatial
weight matrices, having a community of specialised neighbours seems to benefit own
inefficiency for productive inputs and damage abatement inputs.

The key message from our analysis of spatial dependence is that the estimation of
the appropriate spatial weights is important, since our results indicate that they are
sensitive to the weight structure, emphasising either the number of neighbours or their
spatial proximity. In the case of pest control, proximity might be more important,
while knowledge and experience spillovers might be more associated with the popula-
tion size of the neighbourhood.

References

Anselin, L. ‘Thirty years of spatial econometrics’, Papers in Regional Science, Vol. 89, (2010)
pp. 3–25.

Areal, F. J., Balcombe, K. and Tiffin, R. ‘Integrating spatial dependence into Stochastic Fron-

tier Analysis’, Australian Journal of Agricultural and Resource Economics, Vol. 56, (2012) pp.
521–541.
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